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Computing phase diagrams of model systems is an essential part of computational condensed mat-
ter physics. In this paper, we discuss in detail the interface pinning (IP) method for calculation of
the Gibbs free energy difference between a solid and a liquid. This is done in a single equilibrium
simulation by applying a harmonic field that biases the system towards two-phase configurations.
The Gibbs free energy difference between the phases is determined from the average force that the
applied field exerts on the system. As a test system, we study the Lennard-Jones model. It is shown
that the coexistence line can be computed efficiently to a high precision when the IP method is
combined with the Newton-Raphson method for finding roots. Statistical and systematic errors are
investigated. Advantages and drawbacks of the IP method are discussed. The high pressure part of the
temperature-density coexistence region is outlined by isomorphs. © 2013 Author(s). All article con-
tent, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4818747]

I. INTRODUCTION

An important aspect of computational condensed matter
physics is to compute phase diagrams of model systems. The
naïve approach is to preform a long-time simulation at a se-
lected state point and hope that the system by itself finds its
preferred phase, i.e., the phase with the lowest Gibbs free en-
ergy. In most cases, this strategy is not viable since first-order
transitions are associated with hysteresis. Thus, the system is
likely to be stuck in a metastable phase. The origin of this
hysteresis effect is the formation of an interface between two
phases. The surface tension of the interface gives rise to a free
energy barrier that the system has to overcome to transform
from one phase to the other.1 A conceptually appealing and
widely used strategy to overcome the hysteresis problem is to
preform simulations starting from an initial configuration with
two phases in a periodic box.2–14 When a steady state situa-
tion is reached the stable phase will grow at the expense of the
other phase. The disadvantages of this approach are that: (i) it
relates to a non-equilibrium computation that cannot be done
ad infinitum; (ii) a sufficiently large system is needed to reach
the steady state growth; (iii) near coexistence, thermal fluc-
tuations will result in some probability that the system will
move towards the disfavored phase. In a recent paper,15 these
problems were resolved by introducing the so-called “inter-
face pinning” (IP) method. In short, the idea of this method is
to compute the average force needed to keep the system in the
two-phase state. This is done by connecting the system to a
harmonic field which couples to an order-parameter that dis-
criminates between the two phases of interest. The Gibbs free
energy difference between the phases is determined by the av-
erage force that the applied field exerts on the system. Thus, a
standard ad infinitum equilibrium simulation gives the infor-
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mation needed to compute the Gibbs free energy difference
between the two phases of interest.

The purpose of this paper is to give a detailed description
of the IP method and show that it is a viable way of com-
puting the solid-liquid Gibbs free energy and construct phase
diagrams. As a test case, we investigate the Lennard-Jones
(LJ) model.16 The remainder of the paper is organized as fol-
lows. In Sec. II, we describe the IP method in general terms.
In Sec. III, we define an order-parameter that distinguishes
between solid and liquid by measuring long-range order. In
Sec. IV, the IP method is applied to the LJ model. The co-
existence line is computed by combining the IP method with
the Newton-Raphson method for finding roots, and statistical
and systematic errors are investigated. In Sec. V, we compare
the IP method to other ways of computing Gibbs free energies
and phase diagrams. The paper is completed with a summary.

II. THE INTERFACE PINNING METHOD

To introduce the IP method, imagine a two-phase
system17 in a periodic orthorhombic box elongated in the z-
direction, i.e., with box lengths X ≤ Y < Z (Fig. 1). Consider
configurations of the NpzT-ensemble defined as the constant
temperature and pressure ensemble where the box lengths X
and Y are fixed at values so that the crystal is unstrained, while
the box length Z is allowed to fluctuate in order to maintain
a constant pressure. Two interfaces will form orthogonally to
the long axis. This orientation will minimize the interface area
and thereby the interface Gibbs free energy Gi. The system
is only barostated in the z-direction since the surface tension
will add an a priori unknown pressure to the px and py com-
ponents of the pressure tensor.18 (It is worth noting that an
orthorhombic box is not a requirement. The angle between
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FIG. 1. Two-phase configuration of the LJ model in a periodic orthorhombic
box at a state point where the liquid is the thermodynamically stable phase
while the crystal is metastable. This is an equilibrium configuration since a
harmonic field biasing towards two-phase configurations has been applied.
The average force exerted by the applied field on the system relates to the
Gibbs free energy difference between the phases.

the box vectors X and Y may differ from 90◦, but should then
be kept constant at an angle that does not strain the crystal.)

Assume that the system is sufficiently large so that the
central regions of the pure phase slabs exhibit bulk properties
up to some arbitrary threshold values. For a given configu-
ration R = {r1, r2, . . . , rN } (for simplicity, we assume that
particles are point-like) particles can then be labeled either
s = [solid], l = [liquid], or i = [interface] and the total
number of particles can be written as N = Ns(R) + Nl(R)
+ Ni(R). Define Nl = 〈Nl(R)〉Ns

and Ni = 〈Ni(R)〉Ns
to be

the average number of liquid and interface particles, respec-
tively, for a given amount of solid particles (i.e., an average
over all realizations of capillary waves so that Ni = const. is
independent of Ns)

N = Ns + Nl + Ni. (1)

Let μs and μl be the chemical potential of the solid and the
liquid, respectively. The total Gibbs free energy of the two-
phase system along Ns is then

G = Nsμs + Nlμl + Gi (2)

as sketched in Fig. 2. When the relative position of the in-
terfaces change within the two-phase regime, Gi and Ni can
be replaced by an constant if “wiggles” can be neglected
(wiggles19, 20 are discussed later in the paper). Thus, combin-
ing the last two equations gives

G = Ns�μ + const., (3)

where �μ ≡ μs − μl and (N − Ni)μl + Gi is assumed to
be constant (this is discussed and verified later in the paper).
Throughout the paper, we let “�” denote “[solid] − [liquid]”
and let “const.” refer to an constant.

A. Harmonic field biasing towards two-phase
configurations

To maintain the system in configurations having two
phases, i.e., “pinning the interfaces,” we apply a harmonic
field that couples to an order-parameter which relates to the
amount of crystal particles in the simulation box. To this aim,
we introduce a global order parameter Q(R). Let Qs and Ql
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FIG. 2. Sketch of the Gibbs free energy G(Q) (solid; black) along an order-
parameter Q that measures the amount of crystalline particles in a system
similar to the one shown on Fig. 1. The liquid has the lowest G and it is thus
the thermodynamically stable phase while the crystal is a metastable phase.
The double arrows in the center of the figure indicate the interface contribu-
tion Gi to G(Q). The double arrow on the right hand side of the figure indi-
cates the total change of G when moving from one phase to the other. The
dashed curve indicates the Gibbs free energy G′(Q) of a system where a har-
monic external field has been applied to stabilize two-phase configurations.
The inset shows a computed G(Q) for the LJ model in the two-phase region
(N = 5120; T = 0.8; p = 1.5; computed using umbrella sampling21, 22).

be the average values of Q(R) when the system is completely
solid or liquid, respectively (at a given pressure p and temper-
ature T). We define Q so that it has a linear dependency on
the amount of solid particles in a two-phase state when addi-
tional degrees of freedom are integrated out (such as phonon
vibrations in the slabs of the pure phases)

Q = Ns

N
Qs + Nl

N
Ql + Ni

N
Qi = Ns

�Q

N
+ const., (4)

where Ni

N
Qi is a constant contribution from interface par-

ticles. Let U (R) be the energy of the unperturbed system,
and

U ′(R) = U (R) + κ

2
[Q(R) − a]2, (5)

be the energy when a “spring-like” harmonic field is ap-
plied. We refer to the field parameters a and κ as the anchor
point and the spring constant, respectively. The Gibbs free en-
ergy along the Q coordinate when the biasing field applied is
(dashed line in Fig. 2)

G′(Q) = G(Q) + κ

2
[Q − a]2. (6)

To give an expression for the probability distribution of Q,
we use that P′(Q) ∝ exp (−G′(Q)/kBT). By insertion of Eq. (3)
and elimination of Ns with Eq. (4), we get that

P ′(Q) =
√

κ

2πkBT
exp

(
− κ

2kBT

[
Q − a + N�μ

κ�Q

]2
)

,

(7)
in the two-phase regime. This distribution is shown for the LJ
model in Fig. 3.
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FIG. 3. P′(Q) distribution of a two-phase system where the relative interface
position has been pinned with a harmonic field (LJ model; T = 0.8; p = 1.5;
rc = 2.5; tsim = 4000). Four values of spring constants have been used,
κ = {2, 4, 10, 20}, respectively. Fluctuations of the order-parameter Q follow
Gaussian statistics (dashed lines; Eq. (7)). The liquid is the thermodynami-
cally stable phase at this state point and the average value of Q is pulled by
the system to values below the anchor point of a = 27.

B. Computing �μ from the average force exerted
by the applied field on the system

The chemical potential difference �μ can be computed
from the average force

F field = −κ[〈Q〉′ − a] (8)

that the field exerts on the system (along the Q coordinate).
When equilibrium is established, the relative position does
not change up to thermal fluctuations and Ffield = −Fsystem

where F system = − ∂G
∂Q

. By applying the chain rule �μ = ∂G
∂Ns

= ∂G
∂Q

∂Q

∂Ns
, then

�μ = −κ�Q

N
[〈Q〉′ − a], (9)

where ∂Q

∂Ns
= �Q

N
is obtained from Eq. (4). Alternatively, a sta-

tistical mechanical deviation of this is possible by isolating
�μ from the average of the P′(Q) distribution (Eq. (7)).

C. Computing coexistence state points with
the Newton-Raphson method for finding roots

Coexistence state points are defined as �μ(p, T) = 0 and
may be computed efficiently using the Newton-Raphson algo-
rithm for finding roots. The required derivatives of �μ along
isobars and isotherms are given by the standard thermody-
namic expressions

∂[�μ]

∂p

∣∣∣∣
T

= �v (10)

and

∂[�μ]

∂T

∣∣∣∣
p

= −�s, (11)

where

�s = �u + p�v − �μ

T
. (12)

In these relations, �v, �s, and �u are changes in specific
volume, entropy, and energy, respectively. Thus, coexistence
points can be computed by iteration of

p(i+1) = p(i) − �μ(i)

�v(i)
(13)

or

T (i+1) = T (i) + �μ(i)

�s(i)
. (14)

Iterations are continued until the computed �μ is zero within
the statistical error.

D. Algorithm for computing coexistence state points

To conclude this section, we give an algorithm for com-
puting coexistence state points in the phase diagram: First,
select a pressure p and temperature T for the initial set of sim-
ulations. Then,

i. construct a crystal configuration in an elongated or-
thorhombic box;

ii. determine the lattice constants of the unstrained crys-
tal by performing an NpT simulation in which the box
lengths X, Y, and Z are allowed to fluctuate indepen-
dently to maintain constant pressure;

iii. compute Qs and vs in an NpzT simulation of the un-
strained crystal;

iv. construct a liquid configuration in an elongated or-
thorhombic box having the same box lengths X and
Y as the unstrained crystal;

v. compute Ql and vl in an NpzT simulation of the liquid;
vi. construct a two-phase configuration having the same

box lengths X and Y as the unstrained crystal;
vii. compute 〈Q〉′ in a NpzT simulation of the two-phase

system with an interface pinning κ
2 (Q(R) − a)2 field

applied;
viii. calculate �μ using Eq. (9);
ix. if �μ is non-zero within the statistical error, repeat

steps i–ix at the pressure given by Eq. (13) or the tem-
perature given by Eq. (14).

We note that an algorithm only involving two-phase sim-
ulations can be designed, since a two-phase simulation con-
tains information about the bulk properties of the liquid and
the crystal. In this paper, we choose to use the above algorithm
for practical reasons.

III. TRANSLATIONAL ORDER PARAMETER

To utilize the method, we need to define an order param-
eter Q(R) that distinguishes between the phases of interest.
Unlike liquids, crystals have long-ranged translational order
and the collective density field may be used to define Q(R)

Q(R) = |ρk|, (15)

where

ρk = N− 1
2

N∑
j=1

exp(−ik · rj ), (16)
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and k = (2πnx/X, 2πny/Y, 0). The integers nx and ny are cho-
sen so that the wave vector k corresponds to a Bragg peak.
This will maximize the contrast between the liquid and the
crystal. The k vector is in the xy-plane (nz = 0) since Z fluc-
tuates in the NpzT-ensemble. The factor N− 1

2 ensures scale
invariance for the average liquid value, Ql∝1, while the in-
tensity of a (single) crystal will scale as Qs ∝ N

1
2 . For two-

phase configurations, Q will scale linearly with the amount
of crystal particles (fulfilling Eq. (4)) since the ρk-argument
of the crystal slab and liquid slab are independent of each
other. We note that this order-parameter may be problematic
in the supercooled regime, since a crystal can lower |ρk| by
introducing a long-wavelength displacement of particles. This
can be avoided by using a different order-parameter, e.g., the
Steinhard Q6 order-parameter.23 This was done in Ref. 15. We
choose to use |ρk| as order-parameter since it is conceptually
appealing, simple, and generally applicable.

Equilibrium trajectories can be constructed using stan-
dard Monte Carlo sampling or standard molecular dynamics
simulations.21, 22 For the latter, forces exerted on particles by
the external field have to be evaluated: The force acting on
particle j is

F′
j = Fj − κ(|ρk| − a)∇j |ρk|, (17)

where Fj is the force without external field, and

∇j |ρk| = −k

[ρk] sin(k · rj ) + �[ρk] cos(k · rj )

|ρk|
√

N
, (18)

where 
[ρk] = ∑N
j=1 cos(k · rj )/

√
N and �[ρk]

= −∑N
j=1 sin(k · rj )/

√
N are the real and imaginary

parts of ρk, respectively. Forces can be computed with
an efficient O(N) scaling algorithm although the force on
particle j depends on the position of all of the particles (this
typically results in an O(N2) scaling algorithm). This is done
in two O(N) steps: (i) compute ρk using Eq. (16) and (ii)
compute particle forces using Eqs. (17) and (18). Monte
Carlo sampling involves evaluation of the energy change δU′

when a particle is moved or the box length Z is changed

δU ′ = δU + κ

2
δ|ρk|2 − κaδ|ρk|, (19)

where δ|ρk|2 = |ρ try
k |2 − |ρcurrent

k |2 and δ|ρk| = |ρ try
k |

− |ρcurrent
k |. These changes may be computed by evalu-

ating δρk = ρ
try
k − ρcurrent

k if the current value of ρk = ρcurrent
k

is stored. Moving particle j yields

δρk = [
exp

( − ik · rtry
j

) − exp
( − ik · rcurrent

j

)]/√
N.

(20)
Thus, computing δρk only involves information about particle
j allowing for efficient computations. When the box length Z
is changed, then δρk = 0 and δU′ = δU since k is perpendic-
ular to the z-direction.

IV. SOLID-LIQUID COMPUTATIONS OF THE
LENNARD-JONES MODEL

As a test case, we apply the IP method to compute solid-
liquid Gibbs free energy differences of the LJ model.16 LJ
interactions are truncated and shifted: U = ∑N

i>j uij where

uij = 4ε([ σ
rij

]12 − [ σ
rij

]6) − 4ε([ σ
rc

]12 − [ σ
rc

]6) for rij < rc and
zero otherwise. LJ units are used throughout the paper:
ε = σ = m = kB = 1. Two truncation distances are consid-
ered: rc = 2.5 and rc = 6. The first choice of 2.5 is the stan-
dard truncation of the LJ model. The latter choice of 6 is a
better approximation of the full LJ model (rc → ∞). Molecu-
lar dynamics simulations are performed using the LAMMPS
software package.24 The ρk-field was implemented into the
package. The Parrinello-Rahman barostat is used25 with a
time constant of 8 Lennard-Jones time units together with a
Nosé-Hoover26, 27 thermostat with a time constant of τNH = 4.
Trajectories are evaluated using a time step of 0.004.

As an example, we compute �μ at p = 1.5 and T = 0.8
(rc = 2.5) as described in the following. First, a crystal struc-
ture of 8×8×20 face centered cubic unit cells (N = 5120) is
constructed and simulated for tsim = 4000. All box lengths are
allowed to fluctuate in order to determine the lattice constants
of the unstrained crystal giving box lengths of X = Y = 12.92.
The unstrained crystal is then simulated for tsim = 4000 in the
NpzT ensemble, and Qs = 55.04 (nx = 16, ny = 0) and the
average partial volume vs = 1.052 is recorded. Next, a liquid
configuration is constructed by melting the crystal in a con-
stant volume simulation by simulating at a high temperature
(T = 5). The NpzT-ensemble (using X = Y = 12.92) of the
liquid is then simulated for tsim = 4000. Ql = 0.93 and an
average specific volume of vl = 1.177 is recorded. Then, a
two-phase configuration is constructed by performing a high
temperature constant volume simulation where particles at
z < Z/2 are kept at their crystal positions using harmonic
springs anchored at crystal sites. The box volume is set in
between that of the crystal and the liquid by scaling the
box length Z. The NpzT-ensemble with a harmonic bias-field
(a = 27; κ = 10) is then simulated for tsim = 40 000 to com-
pute 〈Q〉′ = 25.246. Equation (9) yields a chemical potential
difference of �μ = 0.080. A configuration from this last sim-
ulation is shown in Fig. 1. The two upper panels in Fig. 4
show �μ along the p = 1.5 isobar and the T = 0.8 isotherm,
respectively (rc = 2.5). The solid lines are computed with

0.0
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Δμ
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0.2

Δμ

0.75 0.8 0.85
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FIG. 4. Panels (a) and (c) show the Gibbs free energy difference between
solid and liquid computed with the IP method (+) and thermodynamic inte-
gration (lines). Panels (b) and (d) show the specific entropy and the specific
volume, respectively. The lines on the lower panels are cubic polynomial fits.
The lines in the upper panels are computed by integration of the fits. The
integration constant is chosen to give the best overall agreement (rc = 2.5).
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TABLE I. Solid-liquid coexistence line of the truncated LJ model (rc = 2.5).

Tm 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
pm − 0.212 0.928 2.185 3.514 4.939 7.921 11.181 14.632 18.180 22.007 26.029 30.050 34.314

pm + ptail − 1.046 0.049 1.264 2.555 3.943 6.859 10.056 13.448 16.943 20.717 24.688 28.661 32.878
vs 1.0614 1.0452 1.0277 1.0110 0.9951 0.9672 0.9421 0.9202 0.9014 0.8835 0.8671 0.8530 0.8394
vl 1.2194 1.1714 1.1360 1.1080 1.0830 1.0446 1.0117 0.9838 0.9612 0.9399 0.9211 0.9043 0.8888
us − 5.358 − 5.156 − 4.953 − 4.742 − 4.513 − 4.020 − 3.483 − 2.907 − 2.301 − 1.663 − 0.997 − 0.315 0.394
ul − 4.294 − 4.218 − 4.075 − 3.888 − 3.683 − 3.183 − 2.627 − 2.041 − 1.400 − 0.727 − 0.009 0.696 1.446
�s − 1.718 − 1.507 − 1.392 − 1.327 − 1.263 − 1.207 − 1.168 − 1.123 − 1.107 − 1.091 − 1.087 − 1.063 − 1.055
dpm

dTm
. . . 12.0a 12.9 13.8 14.7 15.6 16.8 17.5 18.4 19.6 20.1 20.7 . . .

�s
�v

10.9 11.9 12.9 13.7 14.4 15.6 16.8 17.6 18.5 19.3 20.1 20.7 21.4

a dpm
dTm

computed by central difference of values in the first two rows.

thermodynamic integration of �s and �v, respectively
(shown in the lower panels). The agreement is excellent.

Next, we use the Newton-Raphson method along
isotherms to compute coexistence state points. As an exam-
ple, we computed the T = 0.8 coexistence pressure from the
state point at p(1) = 1.5. Equation (13) provides pressures of
p(i) = {2.141, 2.189, 2.185(2)}. In the last iteration, the es-
timated chemical potential difference is zero within the sta-
tistical error, �μ = 0.0001(2) (numbers in parentheses indi-
cate the statistical errors on the last digit). Tables I and II list
computed coexistence points using rc = 6 and rc = 2.5, re-
spectively. As a consistency check, we note that the computed
melting line obeys the Clausius-Clapeyron relation, dpm

dTm
= �s

�v

(two last rows in Tables I and II). The left-hand side of the
relation is computed by central differences of the computed
melting line.

A. Isomorph prediction of the ρT coexistence region

As an aside, we test a recent theoretical prediction29, 30

related to the melting region in the ρT-plane (Fig. 5): a large
class of systems have curves in the phase diagram, referred to
as “isomorphs,”29 along which structure, dynamics, and some
thermodynamic properties are nearly constant. These are de-
fined as

T = T∗h(ρ), (21)

where T∗ is the temperature at a reference state point and
h(ρ)31 is a function of ρ (not to be confused with the specific
enthalpy h). This class of “simple”32 systems is characterized

by the property that fluctuations of the virial W (the potential
part of the pressure) and the potential energy U are strongly
correlated in the NVT ensemble:33–35 if δW = W − 〈W 〉
and δU = U − 〈U〉, then the correlation coefficient
R = 〈δWδU 〉/

√
〈(δW )2〉〈(δU )2〉 is close to unity.

For systems with inverse power-law pair interac-
tions, uij ∝ r−n, isomorph invariance is trivial36 with
h(ρ) = (ρ/ρ∗)n/3 where ρ∗ is the density at the reference state
point. For systems with LJ pair interactions (a sum of two in-
verse power-laws), the scaling is approximate and reflects an
effective inverse power-law of repulsive interactions.37 The
apparent exponent is state point and phase dependent31, 38

h(ρ) =
[

ρ

ρ∗

]4 [γ∗
2

− 1
]

−
[

ρ

ρ∗

]2 [γ∗
2

− 2
]
, (22)

where γ ∗ is a constant that may be determined from virial-
energy fluctuations in the NVT ensemble at the reference state

point by using the identity γ = ∂ log(T )
∂ log(ρ)

∣∣∣
Sex

= 〈δWδU〉
〈(δU )2〉 . Here, it

is used that the excess entropy Sex is isomorph invariant (γ ∗
= γ evaluated at the reference state point).

The dashed line in Fig. 5 is a liquid isomorph
(γ ∗ = 4.816; T∗ = 2; ρ∗ = 1/0.9403 = 1.064; R = 0.991)
and the solid line is a crystal isomorph (γ ∗ = 5.517;
T∗ = 2; ρ∗ = 1/0.8827 = 1.133; R = 0.998). At high tem-
peratures and densities, the coexistence region is outlined by
these isomorphs. Deviations from the prediction are, however,
significant at low ρT. This is properly due to long-range at-
tractive interactions not being accounted for by an effective
inverse power-law. Consistent with this interpretation, the

TABLE II. Solid-liquid coexistence line of the truncated LJ model (rc = 6).

Tm 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
pm − 0.970 0.132 1.337 2.629 4.012 6.930 10.145 13.549 17.104 20.857 24.850 28.916 33.041

pm + ptail − 1.030 0.068 1.270 2.560 3.940 6.853 10.063 13.463 17.014 20.763 24.753 28.815 32.937
vs 1.0553 1.0400 1.0242 1.0086 0.9933 0.9661 0.9412 0.9194 0.9002 0.8827 0.8663 0.8518 0.8388
vl 1.2358 1.1804 1.1425 1.1120 1.0864 1.0470 1.0127 0.9852 0.9616 0.9403 0.9208 0.9038 0.8885
us − 6.314 − 6.125 − 5.929 − 5.722 − 5.506 − 5.037 − 4.526 − 3.972 − 3.385 − 2.768 − 2.120 − 1.451 − 0.764
ul − 5.024 − 5.008 − 4.902 − 4.755 − 4.570 − 4.106 − 3.603 − 3.021 − 2.409 − 1.762 − 1.085 − 0.379 0.325
�s − 1.858 − 1.622 − 1.480 − 1.377 − 1.311 − 1.245 − 1.177 − 1.153 − 1.125 − 1.103 − 1.085 − 1.073 − 1.050
dpm

dTm
. . . 11.5a 12.5 13.4 14.3 15.3 16.5 17.4 18.3 19.4 20.1 20.5 . . .

�s
�v

10.3 11.6 12.5 13.3 14.1 15.4 16.5 17.5 18.3 19.1 20.0 20.6 21.1

a dpm
dTm

computed by central difference of values in the first two rows.
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FIG. 5. Coexistence region of the Lennard-Jones model in the ρT-plane on a
log -10 scale. Filled symbols are computed with the IP method (Tables I and
II). The points labeled as ×’s are reproduced from Sousa et al., J. Chem. Phys.
136, 174502 (2012). The agreement is good. At high temperatures and den-
sities, the coexistence region is outlined by isomorphs (see text for details).
The shapes of the isomorphs are determined at the state points indicated by
open circles (no fitting procedure was applied).

melting region of the rc = 2.5 truncation of pair interactions
deviates from the rc = 6 in this part of phase space. A scaling
form of Aρ4 + Bρ2 (like Eq. (22)) has previously been vali-
dated by Khrapak and co-workers.39, 40 They used Rosenfeld’s
rule of additivity of melting curves41 to motivate the scaling
law.

B. Correcting for missing long-range attractions

To estimate the melting line of the full LJ model
(rc → ∞), we apply an approximate pressure correction ptail

that rectifies missing long-range attractions of the truncated
model. To this aim, we first consider the pressure correction
in a simulation of solid or liquid in bulk: it is convenient to
assume that the radial distribution function is constant at dis-
tance larger than the truncation. Then the correction is an-
alytic and only depends on ρ and rc.21 Since the densities
of the solid and the liquid are different, so are the correc-
tions for the two phases. For the pressure correction of a two-
phase simulation, we use the average of the bulk pressure
corrections

ptail = 8π

3

[
v−2

s + v−2
l

] [
2

3
r−9
c − r−3

c

]
. (23)

The third rows in Tables I and II list the corrected melting
pressures (pm + ptail). Deviations between the corrected melt-
ing pressures when truncating at rc = 2.5 or rc = 6 are com-
parable to statistical error.

Computed melting points are shown in Fig. 6 as filled
symbols. In the same figure, +’s and ×’s are coexistence
points computed with other methods.28, 42 The agreement is
excellent. Differences are highlighted in the inset by showing
deviations from a cubic fit to the computed melting points.
Deviations from the results of Ref. 28 are within statistical er-
ror, while the melting pressure of Ref. 42 is systematically
too low by about �p � 0.05 (except for one data point).
Systematic errors in computed melting lines are common42

and are typically related to approximate tail corrections (like
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T

0

10

20

30

p

p
m

+p
tail

 (r
c
=6)

p
m

+p
tail

 (r
c
=2.5)

cubic fit
[Mastny 2007]
[Sousa 2012]

0.8 1.2 1.6 2 2.4

0

0.1
deviations
  from fit

CP

solid

liquid

FIG. 6. Coexistence line of the full Lennard-Jones model in the pT-
plane. Filled symbols are coexistence points computed with the IP method
(Tables I and II). Pressures are corrected for missing long-range interactions
using Eq. (23). The solid line is a cubic fit (rc = 6). The symbols +’s and
×’s are coexistence points reproduced from E. A. Mastny and J. J. de Pablo,
J. Chem. Phys. 127, 104504 (2007) and Sousa et al., J. Chem. Phys. 136,
174502 (2012), respectively. The inset shows deviations from the fit. The as-
terisk is the gas-liquid critical point (TCP = 1.31; pCP = 0.15).43

Eq. (23)), finite size effects or method specific systematic er-
rors. In Subsections IV C–IV F, we will discuss systematic
and statistical errors related to the IP method.

C. Statistical error

How does the statistical error of the �μ estimate de-
pend on the choice of spring constant κ? To answer this ques-
tion, we compute the Q(t) autocorrelation function (using the
Wiener-Khinchin theorem45 with fast Fourier transforms)

C(t) = 〈δQ(0)δQ(t)〉
〈(δQ)2〉 , (24)

where δQ(t) = Q(t) − 〈Q〉. Fig. 7 shows C(t) for four
choices of κ (p = 1.5; T = 0.8; rc = 2.5). C(t) reveals two
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FIG. 7. Q time autocorrelation function for four spring constants κ (same pa-
rameters as results shown in Fig. 3). Decorrelation occurs on two timescales:
(i) a fast time scale related to sound waves and (ii) interface movements.
Dashed lines are Aexp (−t/τ ) fits to the slow interface process. The inset
shows the relative statistical error of the �μ = 0.080 estimate. This error
is computed by dividing runs into statistically independent blocks44 of length
tblock = 100 (tsim = 2000).
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FIG. 8. Computed �μ (Eq. (9)) as a function of the “interface distance”
defined as (〈Q〉′ − Ql)/(Qs − Ql) (T = 0.8; p = 1.5; rc = 2.5; κ = 10) of
three system sizes with the same geometry ({4×4×10; 6×6×15; 8×8×20};
N = {640, 2160, 5120}). The inset shows the average of the computed �μ’s
as a function of system size. Error bars indicate the statistical error plus the
variation related to interface position (tsim = 40 000).

relaxation processes that are occurring on different time-
scales. We assign them as follows: (i) a fast process related
to phonon vibrations and rearrangements of particles, and
(ii) a slower over-damped process related to particles mov-
ing between phases, Ns(t) = −Nl(t) + const. For the inves-
tigated κ’s, the characteristic time τ for the slow process is
nearly constant. τ scales as 1/κ for smaller values of κ on this
timescale (data not shown). The relative statistical error on
the computed �μ is estimated by dividing runs into 20 inde-
pendent blocks of length tblock = 100 > τ .44 For the shown
κ’s, spanning two orders of magnitude, the statistical error is
independent of κ (inset on Fig. 7).

D. Systematic errors at small system sizes

To investigate finite size effects, we computed �μ at p
= 1.5 and T = 0.8 with rc = 2.5 using three systems sizes
with the same geometry: N = {640, 2160, 5120}, respectively
(Fig. 8). For the smallest system sizes, the computed �μ de-
pends measurably on the relative interface positions (varied
by changing a). This effect is not seen for the two larger sys-
tem sizes. The inset shows the system size dependency of the
computed �μ. Error bars indicate the statistical error plus the
variation related to the positions of the interfaces relative to
each other. The dashed 1/N line is a guide to the eye. For the
largest system sizes, the error of the estimated �μ is on the
order of 10−3. This corresponds to an error of the computed
melting temperature of about 10−3 (Eq. (14)).

E. Gibbs free energy dependency of the interface
positions relative to each other

We have assumed that the Gibbs free energy in the two-
phase region is independent of interface positions relative to
each other. There are, however, two effects that may spoil this
assumption: (i) if the distance between the interfaces is suffi-
ciently small, particles in one (or both) phases will not have
bulk properties, and (ii) “wiggles” on G(Ns).19, 20 To exem-

FIG. 9. Two two-phase configurations of a square lattice gas with attractive
interactions between neighbor particles. Solid particles are red and fluid par-
ticles are green. The interface Gibbs free energy Gi is different for the two
configurations and moving a particle from one phase to the other, as indicated
by the arrow, results in different changes of the energy. This results in wiggles
on G(Ns).

plify the latter effect, think of a square lattice gas with attrac-
tions between neighboring particles. Fig. 9 shows two two-
phase configurations of this model. The interface Gibbs free
energy Gi is different for the two configurations resulting in
wiggles of G(Ns). The wiggle period on G(Q) is �Q/Nz where
Nz is the number of crystal planes in the z-direction. To inves-
tigate the Gibbs free energy dependency of interface positions
of the LJ model, we perform simulations over a range of a’s
with overlapping P′(Q) distributions. From this, G(Q) is con-
structed with the umbrella method21, 22 (histogram reweigh-
ing is done with the MBAR algorithm46). We find no wiggles
(Fig. 10), but conjecture that they are hidden in the statistical
noise. We emphasize that wiggles may be accounted for and
do not constitute a fundamental limitation of the IP method.

F. Guidelines for choosing a and κ

How should the anchor point a and the spring constant
κ of the harmonic field be chosen to yield the optimal com-
putation? To answer this question, we note that the average
distance between the two interfaces should be as large as pos-
sible to ensure that pure phase slabs have bulk properties.
This distance can be controlled by the anchor point a. To
give a guideline for an optimal a, we consider the limit where
κ → ∞ or �μ = 0. From Eq. (9), we find that a = 〈Q〉′. The
optimal value of a is

a � Ql + �Q

2
. (25)
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FIG. 10. Crosses show G(Q) in units of kBT of six applied fields with differ-
ent spring anchor points (data points are shifted horizontally for clarity). The
circles show G(Q) computed with umbrella sampling.21, 22 G(Q) has a linear
dependency on Q (within the statistical noise).
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The “�” indicates that the interface contribution Qi has been
ignored. Next, we consider the spring constant κ . There are
two arguments for choosing a stiff spring, i.e., a large value
of κ: (i) a small κ would not keep the system in two-phase
configurations; (ii) the relaxation time of interface dynamics τ

scales as 1/κ for small κ’s, thus giving bad statistics. There is,
however, also an argument for choosing a small κ: Interface
fluctuations should span at least one crystal plane to account
for wiggles on G(Q). Thus, κ should optimally be chosen so
that interface fluctuations span one crystal plane. Setting the
standard deviation of the P′(Q) distribution (Eq. (7)) equal to
�Q/Nz, we get

κ � kBT
N2

z

�Q2
, (26)

where Nz is the number of crystal planes in the z-direction. We
emphasize that one of the conclusions of this paper is that the
IP method is forgiving towards the choice of field parameters.

V. ADVANTAGES AND DRAWBACKS OF THE
INTERFACE PINNING METHOD

Let us briefly review other methods for computing Gibbs
free energies and phase diagrams11, 21, 22 before discussing the
advantages and drawbacks of the IP method. In the moving
interface approaches, discussed in the Introduction, a simula-
tion is performed of a two-phase system.2–14 The thermody-
namically favored phase will grow in a constant NpT or μV T

simulation, allowing to locate coexistence points by changing
intensive variables such as p, T, or μ. An alternative is to use
an indirect method where the Gibbs free energy of the pure
phases is computed in separate simulations. The Gibbs free
energy can be computed by Widom insertion47, 48 or by ther-
modynamic integration to a state of known Gibbs free energy,
e.g., an ideal gas,49 a harmonic solid,36 or an Einstein solid.50

Umbrella sampling or metadynamics along a good reaction
coordinate can be used to compute the Gibbs free-energy of
transforming the system from one phase to the other.51–54 The
reader is encouraged to explore Refs. 11, 21, and 22 and ref-
erences therein for more about methods for computing phase
diagrams.

What are the advances and drawbacks of the IP method?
First, the IP method inherits the conceptual simplicity, gen-
eral applicability, and ease to implement the moving inter-
face method. Since the solid-liquid interface is represented
explicitly, simulations give information about interface prop-
erties. As an example, the interface stiffness may be computed
with the capillary fluctuation method.55 Crystal growth rates
may be computed from Q(t) fluctuations (Fig. 7) similar to
the method suggested by Briels and Tepper56, 57 (in the BT
method, two-phase configurations are stabilized by keeping
the volume constant). We leave such investigations to future
publications. A disadvantage of having an explicit interface
is that it is in direct contact with the solid and the liquid
phases.58 In effect, properties of the liquid and the solid slabs
may not have bulk values. This is evident in the computed
�μ’s of the system size with 640 particles (Fig. 8). Here,
�μ depends systematically on a. This may lead to larger fi-
nite size effects compared to methods where free energies are

computed in separate simulations having periodic boundaries.
Another disadvantage is that a low interface mobility can re-
sult in slow dynamics (Fig. 7). This will result in large sta-
tistical errors or, in the worst case, it may even be difficult to
reach equilibrium.

The IP method constitutes an alternative when other
methods are difficult or impossible to use. Widom
insertion47, 48 works best for dilute systems whereas it is not
a viable option for dense liquids or solids. Thermodynamic
integration to a state of known Gibbs free energy21, 22 is prob-
lematic when the path includes additional first order tran-
sitions. This happens when a phase is surrounded by other
phases in the phase diagram. A reference state point can also
be nontrivial to identify. Examples are quasi-crystals, liquid-
crystals, plastic-crystals, or other phases having a mixture of
order and disorder. The IP method is versatile, and may be
used to study these phases. Moreover, it can be generalized
to be used with two-phase simulations of multi-components
systems,59 between two fluid phases (gas-liquid or liquid-
liquid) or two solid phases. For the latter, one of the crystals
will be strained when simulating the two-phase system (as-
suming that the lattice constants of the crystals are different).
This can be rectified by adding the free energy of straining
to the computed �μ. Low mobility of a solid-solid interface
could make it unfeasible to use the IP method. Integration
along a reaction path of transformation is not trivial, since
it is often difficult to identify a suitable coordinate capturing
the entire phase transition. As an example, neither the number
of crystalline particles Ns nor Q = |ρk| are good reaction co-
ordinates, since the cluster of crystalline particles undergoes
geometrical transitions19, 60 (in the periodic elongated or-
thorhombic simulation cell). The shape of the preferred clus-
ter is determined by the surface area, since a small area gives
the lowest Gi due to surface tension. For small Ns, a spherical
cluster will have the smallest surface area.1 At some point,
when Ns is increased, a cylinder will be the preferred geome-
try. When Ns � N/2, then a slab has the smallest surface area
(Fig. 1). Thus, there are several geometrical free energy barri-
ers orthogonal to the Ns coordinate (with barrier heights that
scales with the area of the transition state clusters). With the
IP method, the selection of the order parameter Q only has to
discriminate between the two phases of interest.

VI. SUMMARY

In summary, we have given a detailed description of the
IP method and shown that it can be used for efficient calcu-
lations of the Gibbs free energy difference between a solid
and a liquid. The melting line can be computed efficiently
to a high precision when the method is combined with the
Newton-Raphson algorithm for finding roots. As an example,
the solid-liquid coexistence line of the truncated LJ model
line was computed. As an aside, it was shown that the high
pressure part of the temperature-density coexistence region is
outlined by isomorphs. An approximate pressure correction
for rectifying the truncation of pair interactions was given.
Statistical errors and systematic variations were investigated.

An important advantage of the IP method is that the solid-
liquid Gibbs free energy difference is computed directly in
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an ad infinitum simulation at a single state point. This makes
it versatile and a viable alternative when it is difficult or im-
possible to perform Widom insertion, thermodynamic integra-
tion, or integration along a reaction path of transformation.
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