Ulf R. Pedersen Image for top bar on www.urp.dk

Ph.D.:

Long-time simulations of viscous liquids - from strong correlations to crystallization

Ulf R. Pedersen

Supervisor: Thomas B. Schroder

Committee: Prof. Jeppe C. Dyre, Prof. Gregor Diezemann and Prof. Francesco Sciortino

The thesis was submitted to Roskilde University ("Glass and Time") the 30th of January 2009 and defended 3rd of April 2009.

Thesis (no papers). thesis_URPedersen_30jan09-NoPapers.pdf (3.3Mb).

Thesis (all). thesis_URPedersen_30jan09.pdf (15Mb).

Lecture given at defense. urp_phdDefence.pdf (3.9Mb)

Lecture: Strong pressure-energy correlations in liquids - Origin and consequences. urp_strongCorr.pdf (4.3Mb).

Abstract

This philosophiæ doctor thesis has thirteen companion papers. The major part is a theoretical and simulation study of a class of liquids referred to as strongly correlating liquids. However, one chapter is dedicated to a study of thermodynamic fluctuations of simulated phospholipid membranes, and another to a simulation study of crystallization of a binary mixture. The thesis also includes a short introduction to supercooled viscous liquids and molecular dynamics simulations. The final chapter is an outlook. The conclusions are as follows:

A class of model liquids exhibit strong correlation in the thermal fluctuations of the virial and potential energy at constant volume. The origin of the correlation is explained for the Lennard-Jones liquid. The pair energy can to a good approximation be replaced by an inverse power-law plus a linear term. At constant volume only the inverse power-law gives a contribution to fluctuations, thereby explaining the correlation. Two quantities characterize a strongly correlating liquid: i) A correlation coefficient, R, that determine the degree of correlation and ii) a slope, gamma, that determine the proportionality between virial and potential energy. If the correlation coefficient is close to unity the liquid is strongly correlating and 3*gamma equals the exponent of the inverse power-law.

For viscous liquids, the correlation coefficient equals the inverse square-root of a Prigogine-Defay ratio defined from three response functions. Also the slope can be determined from response functions. Literature values of the classical Prigogine-Defay suggests that van der Waals bonded liquids in general are strongly correlating.

Strongly correlating viscous liquids are more simple than viscous liquids in general: i) Slow dynamics are determined by a single relaxing parameter. Thus, time- and frequency-dependent response functions of a given ensemble are proportional. ii) Scale invariance is inherited from soft-sphere liquids though the effective inverse-power law. Thus, state points with the same value of rho**gamma/T have the same scaled structure and dynamics. These conclusions are verified in simulations.

Slow thermal fluctuations of volume and energy of simulated phospholipid membranes are strongly correlated. The origin of the strong correlation can be traced to the van der Waals bonded core of the membranes and, thus, have the same origin as simple strongly correlating liquids.

The last part of the thesis reports crystallization into the MgZn2 Laves phase of the binary Lennard-Jones mixture suggested by Wahnstrom [1991].

Abstract in danish:

Denne philosophiæ doctor afhandling er ledsaget af tretten artikler. Hoveddelen er et teoretisk og simulerings studie af en klasse af væsker refereret til som stærkt ko- rrelerede væsker. Dog er et kapitel dedikeret til et studie af termiske Fuktuationer af simulerede phospholipidmembraner, og et kapitel til et simuleringstudie af krystallis- ering af en binær blanding. Afhandlingen inkluderer også en kort introduktion til underafkølede viskøse væsker samt molekyledynamik simuleringer. Det sidste kapitel omhandler fremtidige undersøgelser. Følgende er konkluderet:

En klasse af modelvæsker udviser ved konstant volumen en stærk korrelation i de termiske Fluktuationer af virial og potentiel energi. Korrelationens ophav er forklaret for Lennard-Jones væsken. Parenergien kan med god tilnærmelse erstattes med en in- vers potensfunktion plus et lineært led. Ved konstant volumen er det kun den inverse potensfunktion som giver bidrag til Fluktuationer, og derved forklarer korrelationen. To størrelser karakteriserer en stærkt korreleret væske: i) En korrelationskoeficient, R, som bestemmer graden af korrelation og ii) en hældning, gamma, som bestemmer pro- portionaliteten mellem virial og potentiel energi. Hvis korrelationskoeficienten er tæt på 1, er væsken stærkt korrelerende og 3gamma er lig med eksponenten af den inverse potensfunktion.

For viskøse væsker er korrelationskoeficienten lig med den inverse kvadratrod af en Prigogine-Defay kvotient defneret ud fra tre responsfunktioner. Hædningen kan også bestemmes ud fra responsfunktioner. Værdier af den klassiske Prigogine-Defay kvotient fra litteraturen indikerer, at van der Waals væsker i almindelighed er stærkt korrelerede.

Stærkt korrelerede viskøse væsker er simplere end viskæse væsker i almindelighed: i) Langsom dynamik er styret af en enkelt relakserende parameter. Derved er de tids- og frekvensafhængige responsfunktioner for et givet ensemble proportionale. ii) Ska- leringsinvarians af soft sphere-væsker nedarves gennem den inverse potensfunktion. Derfor har tilstande med samme værdi af rho**gamma/T den samme skallerede struktur og dynamik. Simuleringer bekræfter disse konklusioner.

Simulerede phospholipidmembraners langsomme termiske Fluktuationer af volu- men og energi er stærkt korrelerede. Forklaringen på den stærke korrelation skal Findes i den indre van der Waalske del af membranen. Derved er oprindelsen den samme som for de stærkt korrelerede simple væsker.

Den sidste del af afhandlingen beretter om krystallisering ind i MgZn2 Laves-fasen af den binære Lennard-Jones blanding foreslået af Wahnstrøm [1991]. Mekanismen for krystallisering af den underafkølede smelte er undersøgt i detaljer.

home